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This paper presents a discipline and a set of control-logic statements to extend
structured programming to arbitrary existing languages. These statements preempt
and replace all control statements in a language, so that all programs written in
Control-Restrictive Instructions for Structural Programming (CRISP) are auto-
matically structured. Structures are provided for real-time, as well as nonreal-time
programming. The principles set forth do not attempt to specify a standard
programming language, but instead, a programming language standard—that is,
a way of programming that contributes to stability, maintainability, readability
(self-documentation), and understandability of the final product.

l. Introduction

The purpose of a higher-level programming language
has historically been to simplify the expression of algo-
rithms or subprogram functions created by an important
class of problems. The flexibility and productivity of such
languages are gauged by the ease with which, and the
degree to which programmers may vary the composition
and execution of programs (Ref. 1). The widely diverse
classes of problems that exist have, over the years, led to
the development of an exceedingly large number of
languages, both wide-application (general-purpose) and
restricted-application (special-purpose). There is no doubt
that standardization is needed, but defining a “standard
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language” is probably only feasible within a distinct prob-
lem class.

The characteristics sought in a standard language,
however, are noble: the language should be capable of
solving problems over a wide range of applicability, and
contribute to the solution of those problems large mea-
sures of stability, maintainability, readability (or self-
documentation), understandability, and machine (or
installation) independence. Furthermore, it should lend
itself as much as possible to program production tools,
automatic design methods, easy assessment of correctness,
easy or automated verification and testing, and easy or
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automated quality assurance measures. To be acceptable,
as a minimum requirement, a standard computer lan-
guage must not hinder the programming process. On the
contrary, the purpose of a standard is to help.

The principles set forth in this work do not attempt to
specify a standard programming language, but instead,
do provide a programming language standard—that is, a
disciplined way of programming to achieve the goals of
the preceeding paragraph.

Restricted control-logic structures, as proposed by
Bshm and Jacopini (Ref. 2) and others (Refs. 8 and 4),
and extended by the author (Ref. 5) form the basis of an
attractive software design and production methodology
known as “structured programming.” Programs written
using these restricted control-logic structures, tend to be
compatible with and enhance other widely useful tech-
niques, such as top-down methods (Ref. 8), modular pro-
gramming, and hierarchic design (Ref. 7). Such programs
are found to be easier to organize, understand, modify,
and manage.

In block-structured” programming languages, such as
ALGOL and PL/I, structured programs are GOTO-free.
Structured programming, however, can be extended to
almost any language, and should not be characterized
simply by the absence of GOTO’s, but rather by the
presence of an organized control-logic discipline.

I1. The CRISP Concept

Program control-logic is specified in what follows here
by way of a set of Control-Restrictive Instructions for
Structured Programming, called CRISP, augmenting an
arbitrary target language. Programmers construct code
using statements from the arbitrary target language, such
as FORTRAN, BASIC, or assembly language, except for
statements governing the program control-logic (branch-
ing, looping, etc.): such control is accomplished by using
a CRISP statement instead.

The source-program statements thus consist of a mix-
ture of CRISP and target-language code, which can then
be processed into executable instructions for a given com-
puter system. The processor may take the form of a
compiler, by which the source statements are translated
directly into executable form; but rewriting or modifying
an existing compiler to accommodate CRISP can be
‘averted by implementing the translation via a CRISP
preprocessor. Neither exists at this writing.
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Such a CRISP preprocessor would access the sequential
source records, written in CRISP or target-language
syntax and replace the control-logic statements by target-
language statements that perform the equivalent action.

The CRISP control structures are precisely those
needed to write structured programs—even nonreal-time
structured programs (Ref. 8). The CRISP concept thus
extends the advantages of structured programming to
those languages that most fit a particular problem.

CRISP preempts all control statements from the target
language and substitutes a set of statements that force
programs to be structured; that is, any program written in
CRISP is automatically structured without the need for
GOTOs. “GOTO-less” structured programming is cur-
rently available in some other languages now coming into
being, such as BLISS (Ref. 9), IFTRAN (Ref. 10), and
SIMPL-X (Ref. 11); a special limited preprocessor for
FORTRAN, called SFTRAN (Ref. 12) is also now
available.

The strength of CRISP, as opposed to these other
structured programming languages lies in the fact that
only the control statements are preempted. Given an
operating CRISP preprocessor for the target language
most suitable for the problem at hand, the user may pro-
ceed to solve the problem in the language he wants, and
is already familiar with. If he is called upon to solve
another problem in another familiar language, then he
again finds the same set of control-logic statements by
which to organize that problem in the other language.

I1l. Elements of CRISP Statements

A CRISP statement begins with a reserved word identi-
fying the type of structure, or the module within a struc-
ture, or the end of a structure. Additionally, CRISP
statements may contain strings that belong to the target
language, or other CRISP statements. For example, in
the CRISP structure of Fig. 1, the substring denoted
by ¢ is a condition that will be substituted directly into a
conditional statement in the target language so as to pro-
duce the structure shown in Fig. 1. The strings s, in Fig. 1
are either target statements or other nested CRISP
constructions.

The complete superset of CRISP constructions is given
in the Appendix, along with flowchart equivalents. (Not
all of these will apply to a given target language.) Each
program structure will be here referred to as a CRISP-
block (not to be confused with the definition of a block in
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block-structured languages such as ALGOL and PL/I);
subdivisions of blocks into constituent parts will be
referred to as modules. Blocks and modules will be typed
by their initiating key-words, as for example, an UNLESS-
block, or a THEN-module; in some cases, block names
may need further description, such as may be desirable
to contrast an IF-THEN-ELSE block from an IF-THEN
block, or a FOR-UNTIL block from a FOR-WHILE
block.

The CRISP structures can conceptually be iterated
and nested to any level desired to produce the intended
program. Indentations and annotations for readability
(which T shall discuss later), however, will tend to limit
the amount of nesting within blocks, because the listing
tends to crowd toward the right-hand edge. Rather than
contend with this continued crowding, the user naturally
finds himself inventing procedures to be linked or called
(and programmed later). As a result, CRISP programs,
subprograms, and subroutines generally fit on one page
each (but link to procedures on other pages).

As Mills (Ref. 4) points out, segmentation of program
listings to a predescribed size, such that each segment
enters only at the top and exits (normally) at the bottom,
is a major asset in coping with program complexity.

CRISP makes allowance for up to three distinct types

of procedure calls within a program. The first is of the
form

DO f
which links to the procedure named f in a

PROCEDURE: f

END
block. In some CRISP processors, it is conceivable that
the entire procedure f could be substituted for the DO f

statement in the object code. Arguments may sometimes
be passed in the calling string f.

The second procedure call is
CALL f

which creates a subroutine linkage to a named procedure
declared in a

136

SUBROUTINE: f

RETURN

block. Subroutine arguments may be passed in the normal
way between CALL and the SUBROUTINE: definition.

The third procedure call is
GOSUB !

where [ is a subroutine label; arguments are not generally
passed, except in the form of common variables, tables,
and so forth. The labeled subroutine is defined in a block
of the form

SUBROUTINE LABEL: [

RETURN

The two different types of subroutine calls are neces-
sary in target languages (Ref. 13) that are capable of call-
ing subroutines both by name and by label. One or the
other may be absent in other languages, however.

Functions, when permitted in the target language, are
identified by block declarations of the form

FUNCTION:

RETURN answer

The answer string is an optional device that may be re-
quired in some target languages to return the function
value. Functions are invoked in the usual target-language
mode.

The main program is identified as the block

PROGRAM: name

SYSTEM (or STOP)

The directive SYSTEM releases the control of execution
to the system; STOP, to the operator. Again, both of
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these options may not be available in an arbitrary target
language.

IV. A CRISP Preprocessor

Because the CRISP statements are keyword-actuated,
it is necessary that target-language noncontrol statements
not begin with these keywords. Otherwise, alternate
CRISP keywords must be chosen. More detailed restric-
tions will appear later in this article. The processor func-
tions will only be outlined here.

The CRISP preprocessor functions in a number of
modes, and I will describe aspects of each in turn. The
main mode is the translation mode, which outputs target-
code statements. The second and third modes are edit
modes: update and annotation. The update mode is a
text-editor that permits insertions, deletions, and altera-
tions of CRISP programs; the annotation mode indents
CRISP blocks and supplies them with flowlines and
Dewey-decimal reference and cross-reference numbers.

The processor allows comments to appear anywhere
in a program, within target-language statements, as well
as within CRISP control statements, and are indicated?
by surrounding the comment string by “<*” and “*>”, as,
for example, by <* comment *>. The comment may then
contain any string of characters except “*>”. CRISP com-
ments continue automatically on the next line if they are
incomplete on the current line.

The strings “<*” and “*>” naturally, must not be per-
mitted constructs in target language statements. If either
is, an alternate comment delimiter may be substituted as
a convention for implementing CRISP in that target
language.

CRISP statements may be continued on several lines
by terminating each unfinished line with “&”; target-
language statements (also continued using a final “&”)
are continued only if permitted within the target lan-
guage syntax.

V. Compile-Time Features of the CRISP
Processor
The CRISP processor has a minimal, but useful,

compile-time text-macro capability. Target languages
having better macro handlers may, therefore, choose not

1The use of <* - + + *> to enclose comments is apt to be imple-
mentation-dependent; similar constructs, such as (* + -+ *), or
[*+++*,0r/*+ -+ */ may be advisable in some cases.
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to have this particular feature implemented. There are
two directives; the first is the macro definition,

%template MEANS target string$END

which declares that occurrences of the type %source string
that match %template are to be replaced, both in CRISP
control statements, as well as in target statements, by
target string. An instance of the type %source string is an
instance of a macro call. The target string may extend
over many lines, defining a procedure and forming a
block of text to be transferred; in such cases, each addi-
tional line is prefixed by %. The end of a defining macro
is signalled by ZEND.

The macro template may contain formal parameters to
be transmitted into the target string; these are signalled
by the occurrence of the parameter marker in the tem-
plate. Whenever a % occurs in an input source line, a
scan of the remainder of the line initiates, much the same
as in the STAGE2 macro processor (Ref. 14). When a
match occurs between the input string calling macro and
a macro template, the target string corresponding to that
template is evaluated with the actual parameters result-
ing from the template match. The result of this evaluation
replaces the matched source string in the output.

Correspondences between actual and formal parameters
are set up during template matching. The template is a
sequence of fixed strings separated by parameter markers
(%), or “holes”. When the matching process is complete,
each parameter marker corresponds to some substring of
the input line and the fixed strings exactly match the
other substrings of the line. The ith parameter string gets
inserted into the target string wherever occurrences of
%i appear in target string.

Macro definitions and calls may be used anywhere in
the CRISP source code; in particular, a call can precede
the macro definition. Macro definitions may contain
macro calls, but not other macro definitions.

The following CRISP program is an example of the
use of the macro capability: Somewhere in the program,
there is a definition module,

ZRANDOM ARRAY MEANS A%END
%FILL %%:% MEANS

gDIM %1(%2:%3)

%FOR DUM=%2 TO %3

% %1(DUM)=RANDOM

%2 NEXT DUMZEND
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The appearance elsewhere in the program of the call

%FILL 4RANDOM ARRAY(1:50)
produces first the intermediate statements

DIM RANDOM ARRAY(1:50)

FOR DUM=1 TO 50
ZRANDOM ARRAY(DUM)=RANDOM
NEXT DUM

which are then rescanned for CRISP control statements
and possible further translations. In this particular case,

there was further macro action, leading to the final
CRISP code:

DIM A(1:50)

FOR DUM=1 TO 50
A(DUM)=RANDOM
NEXT DUM

Each module can automatically be given a number by
the CRISP processor in its annotation mode, and assigned
a special module-entry counter to record the number of
times that particular module has been executed when the
program runs. The execution count for each module
through level n can then be printed upon execution of
the CRISP directive

DISPLLAY THRU LEVEL n

The value n is the level of hierarchical nesting within
the program as determined by the decimal count in the
Dewey-decimal module identifier, to be described a little
later.

This path-execution-count capability is invaluable in
program testing, for one may readily identify which paths
have been executed and which have not. Moreover, be-
cause of the program structure, it is possible to design
and provide input data to exercise these paths.

For fully verified programs, the overhead setting up
and incrementing of these counters can be removed by
prefixing the source program by the CRISP directive

CANCEL MODULE COUNT

Selected portions of a program may have their module
counters enabled and disabled by using the directive

ENABLE MODULE COUNT

with the CANCEL directive above.
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Perhaps the most unique of the compile-time features
is what may be termed a “compile-time” edit statement:

REQUIRE AT m:s

This statement causes the statement s to be inserted in
the object code immediately before the code for module
m, numbered as in the next section. Its purpose is to per-
mit truly top-down development and readability of pro-
grams. For example, suppose a DO f appears inside a
loop. At the time the DO f statement was written, the
programmer envisioned that a certain definite function
would be performed by an as-yet undefined algorithm.
However, in programming the PROCEDURE: f at the
next level, he may discover that, to program the intended
function, an unforeseen variable needs to be declared and
given an initial value back at an earlier program level,
outside the loop.

But the program development up to this point was not
concerned with this value. It has only just become impor-
tant. Furthermore, the declaration and initialization of a
new variable does not in any way alter the correctness
assessment of the program up to that point (except per-
haps in timing, if critical). Hence, it makes sense to asso-
ciate the statement that initializes a procedure with that
procedure, rather than back at the previous level. Other-
wise, it threatens readability and understanding, both of
the previous module (“what is this doing here?”) as well
as that needing it (“where on Earth did I initialize that
variable, and what to?”)

Every data structure need not be declared using a
REQUIRE statement, some are naturally passed on to
procedures as data on which they are to operate. Use of
the REQUIRE, however, can enhance readability when
internal structures need external initializations.

VI. Module Terminations

As I have discussed in another article (Ref. 5), there
are times when module exits other than the normal struc-
tured exit are needed for program efliciency and clarity.
These may take the form of responses to pathological or
abnormal events, in which case, they are abnormal ter-
minations. Sometimes, however, the event leading to a
desired immediate nonnormal (nonstructured) exit is one
that is expected. For example, it is a typical practice to
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input data until an end-of-file indication signals the pro-
gram to begin processing in a new mode. I call these non-
structured exits from a module paranormal terminations
{para from Greek meaning “beside”).

IF NO ¢ DURING s
:—>THEN s,

Sn
: END
:—>ELSE s,

Sp

ENDBLOCK

Here, s refers to a single statement, such as an input state-
ment with ¢ an end-of-file trap, or s may be a CRISP pro-
cedure call in which the traps, or t,,...,t, appear. The
#’s can conceivably also refer to logical conditions tested
during s. The vertical line of colons and “:—>” represent
flowlines, supplied by the CRISP processor in its annota-
tion mode.

The CRISP directives that effect extra-normal exits
from CRISP procedures are

EXIT t (or EXIT ¢t TO m)
and

ABORT (or ABORT TO m, or ABORT I TO m)

in which ¢ identifies the CASE-label (¢ may be null for
exit to an ELSE-module) and m identifies the CASE- or
ELSE- module number. “TO m” is optional on EXIT
statements, and also on ABORT if the entire program
has only one abnormal-termination procedure.

The CRISP processor restricts a module to having only
one normal (structured) exit statement per module. How-
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However, there must have been a CASE- or ELSE-
module identified at a previous level of the program to
which such transfers are to occur. Two illustrative cases
are

IF NO t,,...,t DURING s
:—>THEN s,

Sn
: END
:—>CASE t;:s,,

Sme1

Sp
END

:—>CASE  ty:s,

Sr

ENDBLOCK

ever, the top-down development of program modules
having multiple exits may necessitate inserting several
nonstructured exit statements into the module, and
CRISP, therefore, allows them. However, these can some-
times create difficulty in isolating errors, because the pro-
gram generally has no convenient way of telling which
exit of the multiplicity was actuated.

The CRISP programmer should thus take care to use
multiple extra-normal exits only whenever the point
within the module returned to is insensitive to whichever
of the multiple exits to that return point is taken.

Vil. CRISP Module Numbering Method

Each CRISP block corresponds to a flowchart structure
containing nodes and flowlines, and each CRISP state-
ment either corresponds to a node or a flowline. One nat-
ural way of numbering graph nodes is the so called pre-
order traverse method. A pre-order traverse of the chart
enumerates the boxes on the flowchart as follows: start-
ing at the top of a structured flowchart, label boxes and
loop-collecting nodes sequentially in order down the chart
until a branching node is sensed. Number this node. The
general rule to be followed whenever a branching node
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is reached is, take the leftmost unnumbered branch.
Whenever a decision-collecting node is encountered, re-
turn to its corresponding decision node if it has a yet-
unnumbered branch, and proceed to number the leftmost
unnumbered branch; if all of its decisions have all
branches numbered, then continue on.

One way that the hierarchic place a module occupies
in a design can be annotated is by a Dewey-decimal
cross-reference. For example, suppose that, on a flow-
chart numbered m, a box, numbered n, refers to a proce-
dure (not subroutine), to be expanded later in the design
process. Then the flowchart for that later expansion could
be made Chart No. m.n. One reading the flowchart, wish-
ing to trace out how the function in box n of flowchart m
is achieved, merely has to locate Chart m.n to proceed.

More specifically, suppose a module appears on
Chart 1.2.6, and has the number 5. Then one can state
that box number 2 on Chart 1 was expanded as Chart 1.2;
on that chart, box 6 was expanded as Chart 1.2.6; and
module number 5 may appear expanded later as Chart
1.2.6.5.

This process can be altered for subroutines and func-
tions also. The alteration is needed because subroutines,
which can be called from many places, would not possess
a unique chart number. Therefore, each subroutine will
be assigned to its own unique level-1 chart number. One
convenient way of distinguishing procedures from sub-
routines is by the use of an alphanumeric chart number;
for example, S6 refers to Subroutine 6, and T4 to Trap
routine 4, ete. The choice of an alphanumeric designator
can be used to group subroutines with common proper-
ties together in documentation. Expansions within sub-
routine flowcharts follow the normal numbering, as, for
example $6.4.2 refers to the box numbered 2 on Chart 56.4.

Comparing flowcharts and their CRISP code structures
(see the Appendix) shows that when IF-THEN-ELSE
configurations are drawn with true to the left of false, and
when multiple decision branches always are drawn in
case-order left to right, then the code statements corre-
sponding to numbered flowchart boxes always appear in
the program in sequential numeric order from the top-
down.

The CRISP system, in its edit mode, can simulate the
preorder traverse of flowchart nodes described above, and
annotate certain lines of the code with its appropriate
number. The format of this annotation for statements
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within a procedures block defined by PROGRAM:, PRO-
CEDURE:, SUBROUTINE:, FUNCTION:, or AT, is

.n statement

The statement can either be CRISP or target language
code. The .n, flush with the left margin for easy identifi-
cation, is the number assigned by the preorder traverse.
Module numbers for PROGRAM:, PROCEDURE:, SUB-
ROUTINE:, FUNCTION:, and AT statements are the
Dewey-decimal reference numbers assigned earlier in the
program; they appear flush at the right-hand margin, as
PROCEDURE: name MOD# d
Thus a statement .n within a procedure with Dewey-

decimal number d is uniquely identified as the Dewey-
decimal d.n.

Statements that invoke subroutines (GOSUB, CALL,
and AT...) have module numbers of the form .n/Ai,
which signals that module n of the current procedure
calls the ith subroutine of a class with alphanumeric
designation A.

VIill. Indentation and Annotation

Although the syntax does not require it, the program
structured hierarchy should be displayed by indenting
the lines of code, such as shown in the syntax table in the
Appendix. Examples in this article are indented according
to the following rule:

If a block contains only one module (such as a FOR-
block), then indent statements comprising that module
by a prespecified number of spaces (here, two) beyond
the block header (the FOR). If a block contains more than
one module (such as an IF-THEN-ELSE-block), then in-
dent three spaces past the block header (IF) to the
module header (THEN or ELSE), and each line of the
module another five spaces beyond the module header.
Certain one-module blocks also have a module header
within the block, such as the IF-THEN block. These are
indented as if they were multiple-module blocks for con-
sistency. The particular numbers of spaces recommended
above for indenting were chosen to aid the flowline
annotation mode.

Programs indented this way are almost as easy to read
as flowcharts, because the block type is identifiable by its
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header, which protrudes from the body of the block, and
the beginning of each module within the block stands
out in the same way. Successive indentations occur for
block structures within modules.

PROGRAM: BUBBLE-SORT

The CRISP processor, in its edit mode, supplies the
necessary indentation and, in addition, annotates the code
with flowlines and module numbers as shown in the
following example:

MOD# 1

<* SORT IN-PLACE AND PRINT A SET OF NUMBERS

<* INPUT FROM A TERMINAL*>

1 INPUT USING ZPROMPTING MESSAGE AND FREE-FORM INPUT: N

DIM %ARRAY TO HOLD NUMBERS

PRINT 'ENTER NUMBERS TO BE SORTED:'
INPUT USING #FREE FORM: ZENTIRE ARRAY

2 FOR N=N BY —1 TO 2 <*DROP OFF TOP ELEMENT EACH CYCLE*>
3 T FOR I=1 TO N—1 <*BUBBLE LARGEST ELEMENT TO ELEMENT N*>
4 T 1 IF ZELEMENTS I AND I+1 OUT OF ORDER
.5 T 1 :—>THEN %ZEXCHANGE VALUES
: LI B e >ENDBLOCK
T «<NEXT I
<<NEXT N

.6 PRINT \'SORTED VALUES:'\%ENTIRE ARRAY; <*BACKSLASH GIVES
<*CARRIAGE RETURN AND SEMICOLON CONTROLS SPACING WHILE

: <*ARRAY IS BEING PRINTED*>
:<=~—=8STOP

<*MACRO DEFINITIONS:*>

Z2PROMPTING MESSAGE AND FREE-FORM INPUT MEANS
%' HOW MANY NUMBERS TO BE SORTED? #'%END

#ARBRAY TO HOLD NUMBERS MEANS A(N)4END
2FREE FORM MEANS '(#)'2END
Z2ENTIRE ARRAY MEANS AZEND

ZELEMENTS I AND I+1 OUT OF ORDER MEANS A(I)>A(I-+1)ZEND

PEXCHANGE VALUES MEANS A(I)==A(I+1)%END

The target language in the above example is MBASIC
(Ref. 13), which performs exchanges via the operator = =.

It is certainly no more difficult to write structured-
program code than it is to draw a flowchart, and both
contain approximately the same level of detail. Some may
argue, since the code listings have to be produced any-
way, that supplying further documentation in the form
of flowcharts is a duplication of effort. Moreover, main-
taining consistency between human-drafted flowcharts
and code listings during an iterative development cycle
can be a very time-consuming task.
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Furthermore, it can be argued that structured code is
more rigorous than a flowchart. For one thing, it is
written in a programming language whose syntax and
semantics are well defined. For another, the structured
code is part of the operating program, no translation
being necessary (with its attendant possibility of intro-
ducing error).

Nevertheless, structured code, even with annotated
flowlines (as in the CRISP example above), tends to be
somewhat less graphic than a flowchart, and the rationale
and functional specification of subprogram submodules
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tends to be a little less understandable in code annota-
tions than it is in the narrative which properly accom-
panies a flowchart.

Thus, while CRISP goes a long way toward illustrating
what a program does very graphically as a self-documented
product, it may not go quite far enough in communicating
all the whys necessary for a reader to review and under-
stand the program. I plan to show, in a later article, how

'ABORT" 'ENABLE
'AT ! 'END'

'CALL '"ENDBLOCK!
'‘CANCEL ' 'EXIT'

'CASE ' 'FOR '
'DISPLAY ' 'FORK"

‘DO ! 'FUNCTION:®
'ELSE' '‘GOSUB

As further restrictions, labels and subroutine names
may not contain commas or colons, nor may the condition
¢ of an IF, WHILE or UNTIL statement begin with the
substring 'NO '. Further, the index ¢ or value o for DO
CASE may not contain ' OF '. When the OF form ap-
pears, the index § may not contain ' THRU '. The index i
for ON may not contain ' DO ', ' GOSUB ', or ' CALL "

In FOR-statements, the index i may not contain '=';
n; may not contain ' BY '; and n, may not contain
" TO ', * UNTIL ', or " WHILE .

The CRISP processor also requires that all values and
labels in ON i and DO CASE statements must be defined
as CASE labels within the ON ¢ or DO CASE block. The
ON i CALL (or GOSUB) statement (or both) may be
absent if the target language does not allow calls by name
or calls by label. Similarly, some of the other construc-
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CRISP source programs can contribute to automatic flow-
charting and automatic narrative documentation.

IX. Other Restrictions

CRISP must limit the use of some of its primitives
within the syntax of the target language so that proper
statement recognition is possible. The restrictions are as
follows: target-language statements may not begin with
the strings

'IF 'REQUIRE '
‘JOIN' 'RETURN'
'LOOP:! ‘STOP!
'NEXT ! 'SUBROUTINE '
'ON ' ‘SYSTEM'
'PROGRAM:' '"THEN'
'PROCEDURE:' "UNLESS '
'REPEAT" '"UNTIL '
'"WHILE '

tions may not be implementable (in a useful form) for
a particular target language.

If ¢ is a trap list in an IF NO ¢ DURING s statement,
the ELSE module must be replaced by CASE modules
corresponding to the trap identifiers.

X. Conclusion

This article has described a method and processor that
extends the advantages of structured programming to
arbitrary target languages. The use of CRISP facilitates
and encourages top-down, hierarchical, modular devel-
opment of structured programs, and contributes a large
measure of self-documentation capability within the
language constructs, annotations, and macro-expansion
features.
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IF ¢
THEN s

2

Sn
END
ELSE s,

Sm+1

Sp
ENDBLOCK

true

false

Sm
Sm-+l

|

Fig. 1. The CRISP IF-THEN-ELSE structure
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Appendix
Formats of CRISP Syntax and Flowchart Structures

S~

This appendix identifies all the CRISP statements and case or subroutine label
indicates the pertinent context for the blocks and modules m: CRISP module number
within blocks. Italic elements in the listing below repre-

n

sent strings translated directly into either the target : numeric index quantifiers in target-language

language syntax, or else strings to become CRISP pro- s: statement, either target language or CRISP
cedure names and the like: t: trap, or event quantifier in target language
c: condition, value corresponds to TRUE or v: variable in target language

FALSE convention

f: program, procedure, or subroutine name The flowchart structurcs for F OR-.NEXT Ioops are
o ) ) shorthand conventions. The trap-handling conventions in
i: index variable names in target language @— are discussed in Ref. 5. All subscripts in the

j,h, k: integers table below represent integers.
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CRISP Flowchart Structure

®Fe

THEN s

%2 true false

Sn
END s
ELSE s

.o
3

Sm+l
Sp sp

s
ENDBLOCK

——

@ IF ¢ true false ‘
THEN 5

Sn

ENDBLOCK °p

et

(3) UNLESS ¢
THEN 5,

rrue false

sy S

sn Sn

ENDBLOCK l

Fig. A-1. CRISP syntax and structure outline
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CRISP Flowchart Structure
iv) ]v],vz,...,ka )
DO CASE || OF | ety {| oNiDOCASEL 4, ..tk
CASE v, (OR /):s, CASE Ly 15
%2 .
. Sn
;n END vy for ) vg (or j+1) v (or h)
LAN ]
END CASEL 55 I , ; ;
CASE vy (OR ['H):Sm : for 1 for ‘22 for ﬁ/
s 5 B
Sm+l . 1 m q
X 5 . . .
. END : ‘ °
;p sn sp s
END ‘
CASE- 4 (OR h):sq CASEI/'ZSq 9 see
Sg+1 * ]
: Sy * Several values of / can transfer
s ENDBLOCK to the same label in (3. The
E,NDBLOCK \;a(lu:s of j and # are integers, j
Fig. A-1. (contd)
CRISP Flowchart Structure
(&) ON i GOSUB 2,4y, .., Lk
Note:
4; ore procedure labels,
used for languages which 1 2 <
call procedures by label XX

l

@ ON CALLT,, fy vey £ Ly o)) £y (er ) Ly (or #¢)

Note:

f; are procedure names, ‘ l l
LA N ]

call procedures by name

used for languages which I

Fig. A-1. (contd)
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CRISP Flowchart structure
CRISP Flowchart Structure
l - () WHILE ¢ false
s
1
*(8) FOR/ = n) BY n, TO ng = has 7 s
1 ssed true 2
5 R ;m . . true
r= ld ’
3 .
9 2 . 51
. Tfa/se S N
. 5 REPEAT B
Sn . Sn
NEXT 7 .
Sn ‘
l *x
(9) FOR/ = ny BY ny WHILE ¢ —
. fEm false
5 c
5 S ny @ UNTIL ¢ true
. s
. { true ]
. 52
5| f . false
NEXT / ‘ ° 5
sp Sn :
REPEAT .
Sn
‘ * %k —_j
*§0) FOR/ = ny BY ny UNTIL ¢ .=
. ! M true
5 ¢
$2 =0+ ngy
° ‘ false
s
. 1
oy ) {9 Loor: 5
NEXT / . 5 .
o 5 .
. Sn
¥ BY nyis optionaf on all FOR-blocks; BY 1 is assumed if omitted Sn
** This flowchart symbol is a shorthand convention, merging initialization, REPEAT IF ¢ L _true
decision, and update boxes together
Fig. A-1. (contd) false

Fig. A-1. (contd)
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CRISP

Flowchart Structure

CRISP

Flowchart Structure

Sn

REPEAT UNLESS ¢

PR

true

false

WHILE NO  DURING s

Sn
REPEAT

“
~

@3 IF NO ¢ DURING s

THEN )

2

Sn
END
ELSE 5,

Smtl
.

s
ENDBLOCK

toceurs

(7 UNTIL NO ¢ DWRING s

Note:

Multiple CASEs may replace
ELSE module here if t

during s results in multiple

transfers. (See

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-22

Fig. A-1. (contd)

2
. 5
Sn R
REPEAT .
n
1
LOOP: .
S} ‘
9 Sp
Sn

REPEAT tF t DURING

Fig. A-1. (contd)
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CRISP Flowchart Structure

LOOP: K
£

Sn

Sn CRISP Flowchart Structure
REPEAT UNLESS r DURING s s ¢
@ Program termination,
STOP Returns control to
user STOP
Subprogram normal
. PROGRAM: termination. Control m
: END passes to invoking
(o ROCEOURE, o @ o
SUBROUT INE':) level; m optional
s s
1 1
sy * Subroutine normal
¢ termination, Contro/
‘ * @ RETURN passes back to calling RETURN
. Sn module
Sn
SYSTEM (or STOP @ See @ through Paranormg/exit/for
bel event t. Contro
ErE'FL';:i?\I;r elow EXIT ¢ passes to ELSE or =
EXIT: TO m CASE module labeled t, EXIT ¢
numbered m at a preceding
level
ATt
@ . @ ABORT Abnormal exit. Control m
s
1 passes to recovery
s 51 ABORT TO m point Jat module m ABORT 4
2 . ABORTL TO m at a preceding level
. Sn
$n Fig. A-1. (contd)
RETURN
RETURN
@) sysTEm SYSTEM

Program termination. Returns
control to System

Fig. A-1. (contd)
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CRISP Flowchart Structure
DO ¢ 1
flor £)
GOSUB 4
[
CALL # ¥

©)

DISPLAY THRU LEVEL &

1

DISPLAY
THRU LEVEL
k

ENABLE MODULE
COUNT

CANCEL MODULE
COUNT

CRISP processor directives: enable/disable
module-counters

® | B ®

REQUIRE AT m:s

CRISP processor directives: inserts state-
ment s into code at the beginning of module m.
Source must be annotated with module numbers

®

% macro

CRISP processor directive., Creates or invokes
a user-defined macro

Fig. A-1. (contd)

CRISP Flowchart Structure
FORK
PROCEDURE: l
’ l | l
i s
. 1 f] f2
sn .
END s
DO £ T
o i 1 I
GOSUB / l
JOIN

Fig. A-1. (contd)
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